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SUMMARY
When P2P systems are used for data sensitive systems, the

data availability has become an important issue. The availability-
based replication using individual node availability is the most
popular method keeping high data availability efficiently. How-
ever, since the individual node availability is derived by the indi-
vidual lifetime information of each node, the availability-based
replication may select useless replicas. In this paper, we ex-
plore the relative MTTF(Mean Time To Failure)-based incentive
scheme for the more efficient availability-based replication. The
relative MTTF is used to classify the guaranteed replicas which
can get the incentive node availability, and these replicas help
reduce the data traffic and the number of replicas without losing
the target data availability. Results from trace-driven simula-
tions show that the replication using our relative MTTF -based
incentive scheme achieves the same target data availability with
41% less data traffic and 24% less replicas.
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1. Introduction

In these days, the P2P data sharing concept has been
the most promising method for large scale distributed
storage systems such as file sharing systems, distributed
wiki systems, content distribution systems, and so on.
One of the important issues in the P2P data sharing,
especially supporting a persistent data storage service,
is the data availability, because the service entities are
unreliable and selfish. As the scale of the distributed
storage systems increases, the data availability issue be-
comes more important [1].

Many P2P systems achieve the desired data avail-
ability by increasing the redundancy of data which is
realized by creating data replicas among its neighbor
nodes[3][9]. The data replicated on multiple replicas
are lost only if all the replicas fail within a short time
interval and we call this interval as a critical time inter-
val. As the number of replicas increases, the probability
that data are lost decreases and the system can achieve
high data availability. However, in such an unreliable
environment, many improper replicas may incur too
much traffic to keep the required redundancy of data
and to manage the consistency of the data between its
replicas. According to this, we should consider the ef-
ficient replication scheme which can sort out more reli-
able replicas in order to keep the high data availability
with less data traffic and fewer replicas.

The most popular and efficient replication scheme
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is the availability-based replication [4][5][6]. The node
availability represents the likelihood that a node is
available, and it is obtained by observing the past indi-
vidual behavior of a node. Conventionally, the fraction
of time a node is online, MTTF

MTTF+MTTR where MTTF
means Mean Time To Failure and MTTR means Mean
Time To Recover, is used for the node availability whose
value lies in (0,1). The data availability is calculated
by the following equation: AD = 1−Πj(1−Aj), where
Aj is the node availability of the replica j. Whenever
the data availability drops below the given target data
availability, the node which has the highest node avail-
ability among the candidate nodes is selected as a new
replica, and this process continues until the data avail-
ability increases over the given target data availability.

It would seem the availability-based replication
works well in general, but there is still room for im-
provement by considering the relativity of replicas. The
actual purpose of the redundancy of data is not keep-
ing the high value of the data availability in any time,
but minimizing the probability that all the replicas fail
within the critical time interval which may represent
the essential time duration of creating a new replica.
That is, if it is possible that a replica R of a node i
guarantees that it has enough time to create another
replica after the node i leaves, we do not need to main-
tain replicas eagerly in order to sustain the high value
of the data availability in any time. We call the replica
R as a guaranteed replica. In this paper, we explore
how to find guaranteed replicas and how to enhance the
availability-based replication with the guaranteed repli-
cas in terms of data traffic and the number of replicas.

2. Relative MTTF-based incentive node avail-
ability

Before describing details of our incentive scheme, we
present how to get the relative MTTF which is the
main parameter to sort out the guaranteed replicas.
When a node i joins a P2P system, it sets its join time
(TJi) to the current time (TCi) and updates its individ-
ual node availability(Ai) by using the updated MTTFi

and the updated MTTRi like the paper [6]. Then it
initializes its absolute MTTF (aMTTFi), which is the
sum of MTTFi and TJi . In turn, it exchanges both
of its Ai and aMTTFi with its neighbor nodes by pig-
gybacking them on the periodic keep-alive messages.
After exchanging Ai and aMTTFi, a node calculates
relative MTTF of its all neighbor nodes. The node j’s
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Algorithm 1 Calculating data availability of node i
using relative MTTF -based incentive node availability
Require: ∆MTTFRij

, ∀j ∈ U {U : set of replicas}
1: AF ← 1
2: for all j ∈ U do
3: if ∆MTTFRij

> TThres {TThres : time threshold} then

4: if AINC > Aj {AINC : incentive availability} then
5: AF ← AF ∗ (1−AINC)
6: else
7: AF ← AF ∗ (1−Aj)
8: else
9: AF ← AF ∗ (1−Aj)

10: AD = 1−AF {AD : Data availability}

relative MTTF calculated by node i (∆MTTFRji
) sets

to the time difference between aMTTFj and node i’s
base time, TBi. That is, ∆MTTFRji

= aMTTFj−TBi
.

TBi
basically sets to aMTTFi, but if node i’s current

time, TCi
, has already passed aMTTFi, TBi

sets to
TCi . As ∆MTTFRji becomes bigger, the probability
that node j will be online after node i leaves increases.
Otherwise, if ∆MTTFRji has a negative value, most
likely node j will leave before node i leaves.

The relative MTTF is mainly used to find more
proper replicas. Whenever a node i calculates data
availability or selects new replicas, node i firstly sorts
out guaranteed replicas whose relative MTTF is greater
than the given time threshold (TThres) like line 3 in al-
gorithm 1 and line 2 in algorithm 2. The guaranteed
replicas most likely ensure that they have enough time
to create a new replica after the node i leaves the P2P
system regardless of their individual node availability.
The required time for creating a new replica is called
Failure Recovery Time(FRT ). As FRT increases, the
required TThres should increase to find out guaranteed
replicas correctly. A guaranteed replica can use the
incentive node availability (AINC) rather than its indi-
vidual node availability. AINC represents how much a
replication scheme believes the reliability of the selected
guaranteed replicas. As AINC increases, the replica-
tion scheme can exploit guaranteed replicas more ag-
gressively to reduce data traffic/the number of replicas,
but it may cause data loss. We will show the detailed
tradeoff in section 3.

Both TThres and AINC are tunable parameters.
Based on the properties of a P2P system, the proper
values for these parameters can be determined. That
is, we can adjust these parameters by monitoring the
P2P system, specifically the data loss. At first, TThres

is set to very big value (80000 sec) and AINC is set to
very low value (0.8). In turn, if no data loss is detected
for a period of time, we can decrease TThres and in-
crease AINC to reduce the data traffic and the number
of replicas. Otherwise, if significant data losses are de-
tected, TThres should increase and AINC must decrease
to prevent the unintended data loss. According to this
feedback process, we can adjust both TThres and AINC

for a P2P system to achieve high data availability effi-
ciently without any unintended data loss.

A node i calculates its data availability like algo-
rithm 1 whenever it perceives any change of its replicas

Algorithm 2 Replication operation for node i using
relative MTTF -based incentive node availability
Require: ∆MTTFRij

, ∀j ∈ N {N : set of neighbors exclude

replicas}
1: for all j ∈ N do
2: if ∆MTTFRij

> TThres then

3: add j to I {I : set of candidates of guaranteed replicas}
4: remove j from N
5: while AD < Target AD do
6: AF ← (1−AD)
7: if I 6= NULL then
8: pick a new node j among I {condition : ∆MTTFRij

is

longest among I }
9: if AINC > Aj then

10: AF = AF ∗ (1−AINC)
11: else
12: AF = AF ∗ (1−Aj)
13: remove j from I
14: else
15: if N 6= NULL then
16: pick a new node j among N {condition : Aj is biggest

among N}
17: if |∆MTTFRij

| < TThres then

18: add j to P {P : a set of pending nodes}
19: else
20: AF = AF ∗ (1−Aj)
21: remove j from N
22: else if P 6= NULL then
23: pick a new node j among P {condition : Aj is biggest

among P}
24: AF = AF ∗ (1−Aj)
25: remove j from P
26: else
27: break
28: AD ← (1−AF )

by exchanging periodic keep-alive messages with neigh-
bors or getting a join/leave notification. If the cal-
culated data availability is lower than the target data
availability, the node i starts to select a new replica
like algorithm 2. At first, it finds the candidates of
guaranteed replicas, then it picks the node j having
the longest ∆MTTFRij among the candidates (line 8).
Even though there can be many possible guaranteed
replicas, we should pick the most proper guaranteed
replica to maximize the effectiveness of the incentive
scheme. After selecting a new replica, the data avail-
ability is calculated with the incentive availability value
(AINC), unless the individual node availability of the
newly selected replica is bigger than AINC (line 9-12).

If the node i needs more replicas but there are
no more candidates of guaranteed replicas, it selects
the node j whose individual node availability is biggest
among the set of normal neighbor nodes like the tradi-
tional availability-based replication. However, if the ab-
solute value of ∆MTTFRij is smaller than the thresh-
old (TThres), the node j is not selected as a new replica
but added to the pending list (line 17-18). With this
policy we can find the replica which has lived for long
time before being selected. That is, this policy relies
on that the node being online for long time will be on-
line for much longer time, which is revealed with many
previous researches. If there is no possible node for a
new replica among the neighbor nodes except the nodes
on the pending list, a new replica is selected among
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TT hres, FRT=2000, Target AD=0.9999
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(c) Data availability as a function of TT hres,
FRT=2000, Target AD=0.9999
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Fig. 1 Performance comparison of the availability based replication using relative MTTF-based incentive scheme
(A-INC) with the traditional availability-based replication (Avail). In A-INC(N), N means the incentive node
availability(AINC) for guaranteed replicas. TThres is the given time threshold value for sorting out guaranteed repli-
cas. FRT means Failure Recovery Time. Target AD is the target data availability.

the pending list based on the individual node availabil-
ity (line 23). This replication operation selecting new
replicas performs until the newly calculated data avail-
ability is above the target data availability (line 5) or
until there is no possible neighbor node (line 26-27).

3. Evaluation

In this section, we evaluate the effectiveness of the rel-
ative MTTF -based incentive node availability for the
availability-based replication in P2P systems in terms
of data traffic, number of replicas, and data availabil-
ity, through the trace driven evaluation using the real
trace. We implemented PASTRY [3] as a P2P rout-
ing protocol. In PASTRY, nodes and data are mapped
into a sequence of digits with base 2b and the choice of
b involves the performance of routing. Each node has L
number of leaf nodes which are the nodes with the nu-
merically closest nodeIds relative to the present node’s
nodeId. The leaf nodes are used to the neighbor nodes
among which the replication scheme picks up the re-
quired replicas. 160 bit nodeId space is used to identify
nodes, and b and L is set to 4 and 16, respectively.

To mimic the behavior of P2P users, we use the
trace from paper [2] which includes over 90K peer lifes-
pan measured in the Gnutella network between March
1st and 8th, 2003. Each node joins/leaves the P2P sys-
tem at the specific time given by the trace. According
to the trace, the number of online nodes fluctuates be-
tween 10K and 14K in the stable state, and our results

are measured after 10K nodes join the system.
We assume that the P2P storage system attempts

to guarantee the target data availability of the stored
data, even though the creator of the data is offline.
Each node creates its own data up to 200MBytes. The
data is stored at the node whose nodeId is closest to the
data key, and also replicated by using the given repli-
cation scheme with the target data availability, which
varies from 0.999 to 0.9999 in this evaluation.

Firstly, in figure 1(a), 1(b) and 1(c), we present
the effectiveness of the relative MTTF -based incentive
scheme under various setting to classify the guaranteed
replicas. While “Avail” represents a constant line, “A-
INC” shows a logarithmic line along with TThres. That
is, “Avail” is equal to “A-INC(N)” when TThres = ∞.
As TThres decreases more, the data traffic caused by
replication operations and the number of replicas to
keep the target AD decreases exponentially. This is
because the less TThres allows that more nodes can
be classified as guaranteed replicas. Moreover, as the
incentive node availability (AINC) for a guaranteed
replica increases more, “A-INC” can save more traffic
and use fewer replicas.

However, when the guaranteed replicas classified
by the small TThres have the high AINC , they are most
likely overestimated and some unintended data losses
occur like figure 1(c). To measure the data availabil-
ity, we check the data availability of the specific data
whenever the node being responsible for the data leaves
the P2P system. Since FRT is the minimally required
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time for completing a replication operation, if there is
at least one replica who will live longer than FRT from
the starting time of the data replication, the data is sup-
posed to be available. According to figure 1(c), we note
that “A-INC” requires an adequate TThres to prevent
the unintended data losses. That is, as AINC increases,
the required TThres should increases. Consequently,
there is a tradeoff between enhancing performance (less
data traffic/less number of replicas) and achieving high
data availability, and the required TThres represents the
breakpoint of the tradeoff under a given AINC .

The important parameter to determine the level of
the data availability is FRT . The longer FRT means
that a node may handle more data and a replication
operation takes more time. According to this, the re-
quired TThres, which is the breakpoint between the per-
formance and the data availability, is also affected by
FRT . In figure 1(d), we observed that as FRT in-
creases, the required TThres increases dramatically ex-
cept the case where AINC is small such as 0.9. That is,
in order to give the high AINC to the guaranteed repli-
cas, we need very big TThres. Fortunately, if FRT is
short, we can aggressively exploit the guaranteed repli-
cas with very high AINC .

In figure 1(e), we show the effectiveness of our rel-
ative MTTF -based incentive scheme for various target
AD. In here, “Quorum” means the quorum-based repli-
cation algorithm which always attempts to keep the
given number of replicas [6]. The number of replicas for
“Quorum” is set to the average number of replicas of
“Avail” for each target AD. “A-INC,FRT=M” means
the replication using relative MTTF -based incentive
scheme which enhances the performance maximally
without the unintended data losses under FRT=M . As
the target AD increases and FRT decreases, “A-INC”
reduces more data traffic. Especially, when FRT=500
and target AD=0.9999, we can reduce around 41% data
traffic.

We also show the effect of the size of neighbors
in figure 1(f). Though “Avail” can reduce data traffic
along with the size of neighbors, the probability sorting
out guaranteed replicas also increases along with it, and
our relative MTTF -based incentive scheme still works
well.

4. Related works

There are several papers to improve the performance of
the availability-based replication [7][8]. But these ap-
proaches miss the relativity between replicas which we
mainly considered. Some researches [2][14] explore the
usage of nodes’ lifetime to enhance the performance
of P2P system, but their target domains (reducing
the connection breakdown, proofing the resilience of
P2P system) are different to ours. Some efforts solve
the data availability problem by using erasure coding
[10][11][12] or exploiting proactive replication [13], but
they still do not consider the relativity between repli-
cas. The coding-based replication is out of the scope

of this paper, but we mainly focus on how to enhance
the performance of the availability-based replication by
considering the relativity between nodes.

5. Conclusion

We propose the relative MTTF -based incentive scheme
for the availability-based replication to achieve very
high data availability with less data traffic and fewer
replicas. By tuning the time threshold for classifying
the guaranteed replicas and their incentive node avail-
ability, our incentive scheme is adjustable to various
kinds of P2P storage systems whose purposes are dif-
ferent to each other. Moreover, the primitive design
of the relative MTTF -based incentive scheme can be
extended to a run-time scheme which adjusts the tun-
able parameters (TThres and AINC) by monitoring the
nodes’ behavior and the loss of data.
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